' Remote Substituent Effects on Regioselectivity in Rhodium(I)-catalyzed Hydroborations of Norbornenes

K.M.J. Brands' and A.S; Kende*

Department of Chemistry; University of Rochester; Rochester, New York 14627, USA

Abstract: Remote substituent q\$ects **on the** *regioselectivity @both the conventional and the rhodiwn(I)-catalyzed hyirobomtions ofznne norbornene derivatives are discussed.*

In the course of an alkaloid synthesis we required access to enautiomerlcally pure norbomanone derivative 1. We envisioned a strategy in which **this** compound was obtained via a regioselective hydtoboration of norbornene 2. The latter was readily available through a highly stereoselective Et₂AlCl-mediated Diels-Alder reaction of enantiopure dienophile 3 with cyclopentadiene (Equation 1).² This paper describes how we achieved this goal as well as some efforts to rationalize our results.

As anticipated, conventional hydroboration of formamide 2 (Table 1, entry 1) gave only a modest C-6 (exo) selectivity, in accord with reported electronic effects on hydroboration reactions.^{3, 4} The corresponding deformylated amine (entry 4) was next treated with BH₃.THF, anticipating a regioselective "intramolecular" hydroboration from the more crowded *endo* face via a coordinated amine-borane complex. While a higher reaction temperature was indeed required, consistent with amine-borane coordination, only exo alcohols⁵ were obtained with marginal regioselectivity.

a) A 1 moleq. BH₃.THF in THF (0.2 M), 16h; 50 % H₂O₂/ 3M NaOH, RT, 1h; Ac₂O/Et₃N/DMAP/CH₂Cl₂, RT, 4h; B 2-3 equiva lents of catecholborane, 5 mol% $1/2$ [Cl(COD)₂Rh₁₂.4Ph₃P in THF (0.2 M), 16 h; oxidative workup and acetylation as in A; b) yields are not optimized and refer to the combined isolated regioisomers after flash chromatography; c) determined by HPLC (Spherisorb® silica 3µm column; hexane/ethanol 95/5 eluent) unless indicated otherwise; d) based on recovered starting material; e) ratio based on pure chromatographed regioisomers

Recognizing that transition metal-catalyzed hydroborations offer an important alternative to conventional techniques, ⁶ we reacted formamide 2 and also the free amine (entries 2-3, 5) with 2-3 molar equivalents of catecholborane in the presence of 5 mol% of 1/2[Cl(COD)₂Rh]₂.4Ph₃P. For all examples a significant enhancement in C-6 regioselectivity was observed. The most striking selectivity was observed for the carbamate (entry 6).⁷

Intrigued by these results, we set out to determine the structural factors that governed the observed selectivity in the rhodium(I)-catalyzed reactions of this system (Table 2). For comparison, a number of our substrates were also subjected to BH₃.THF hydroborations. Some literature examples are also included (entries 2,3 and 5-9). The stereo- and regiochemistries of all reported products were readily determined by both ¹H and ¹³C-NMR.^{5, 8}

Table 2: Hydroboration of norbornene derivatives 7 (eq. 3).

a) 1 moleq. BH₃.THF in THF (0.2 M), RT, 16h; 50 % H₂O₂/ 3M NaOH, RT, 1h; Ac₂O/Et₃N/DMAP/CH₂Cl₂, RT, 4h; b) 2-3 eq catecholborane; 5 mol% 1/2[Cl(COD₂Rh]₂.4Ph₃P in THF (0.2 M); RT, 16 h; oxidative workup yields are in %, are not optimized and refer to the combined isolated regioisomers after flash chromatography; d) literature ratios are referenced; all other stated ratios were determined by us using NMR on both crude and purified products. Error margin is ±5; e) entries 17 and 18 used together as a 3/1 mixture of the inseparable isomers, with the isomer of entry 18 as the major one (cf. note 15).

Table 2 shows that the conventional and rhodium(I)-catalyzed hydroboration reactions generally have opposite regioselectivities. A similar observation has been noted by Evans et. al. in cyclohexenyl systems.⁹ Since oxidation of organoboranes occurs with retention of configuration, all of our hydroborations must have occurred from the exo face. This makes a directing role for polar substituents, as has recently been reported for iridium(I) catalyzed hydroborations in conformationally more flexible systems,¹⁰ unlikely in our cases.

It is clear from Table 2 that the preference for the formation of the 2,6 substituted isomers 8 in the conventional sequence is only very modest. When the polar substituents are exo, there seems to be a qualitative correlation between their field effect¹¹ and the regioselectivity (entries 3, 5, 7, 14; and also 4 vs. 19), as is expected for a reaction dominated solely by electronic effects. The relation between endo substituent polarity and regioselectivity appears much less straightforward (entries 1, 2, 6, 8, 9, 13).

For the rhodium(I) catalyzed hydroborations the endo substituents seem to be far more important in enhancing the regioselectivity than their exo counterparts (entry 10 vs. 11; 13 vs. 14). It is also clear that the correlation goes beyond a pure inductively withdrawing effect of the endo substituents (entry 1 vs. 10 and 12; 4 vs. 19 and 20). Very informative are entries 15 and 16, which show that for catalyzed hydroboration a dibenzylaminomethyl substituent only affects the regiochemistry when it has the endo orientation. Empirically, the regioselectivity of the catalyzed reaction increases in the following order of endo substituents: ester < amide \approx carbamate \approx dibenzylaminomethyl < sulfone. Entries 15 and 19 indicate that the endo carbamate and dibenzyl-aminomethyl groups are equipotent in favoring regioisomer 8. Yet, in the case of 4 ($R_1 = CO_2$ Me; entry 6 of Table 1) complete selectivity was observed. At this point we cannot offer an adequate explanation for these observations. It must also be noted that formamide esters (entries 17 and 18) failed to react under the catalyzed conditions.

The mechanism of transition metal-catalyzed hydroboration reactions is still unclear, and could be highly dependent on the structure of the substrate olefin.^{17, 18} However ensemble A can account nicely for the observed remote substituent effects. It incorporates both the postulated complex formed by oxidative insertion of rhodium(I) into the boron hydrogen bond of catecholborane,⁶ and also the experimentally demonstrated small charge separation effects in the insertion of olefins into transition metal hydride bonds (or its microscopic reverse, β -hydride elimination).¹⁹

We conclude that useful regioselectivities can be attained in transition metal-catalyzed hydroboration reactions of norbornenes containing certain polar functional groups on the endo face. The mechanistic origin and broader synthetic applicability of this selectivity remain to be further investigated.²⁰

References and notes:

- 1 Present address: Merck, Sharp & Dohme Research Laboratories, P.O. Box 2000, Rahway, NJ 07065.
- 2 We thank Professor Manfred Reetz (Max Planck Inst. f. Kohlenforschung, D-4330 Mülheim, Germany) for providing us with his unpublished results and experimental conditions for this reaction, as well as structural evidence (including X-ray analysis) for the adduct: see Reetz, M.T.; Kayser, F.; Harms, K. Tetrahedron Lett. 1992, 33, 3453-3456.
- 3 Pelter, A.; Smith, K., in "Comprehensive Organic Chemistry " (Barton, D.H.R.; Ollis, W.D., Eds.), Vol. 3, Part 14, Pergamon: Oxford, 1979, p. 695, 713. See also reference 9.
- 4 For examples in norbornene hydroborations: a) Henkel, J.G.; Spurlock, L.A. J. Am. Chem. Soc., 1973, 95, 8339; b) Malinovsky, M.S.; Kas'yan, L.I.; Ovsyanik, V.D.; Ivchenko, O.V.; Tkachenko, V.S. Zh. Org. Khim., 1972, 8, 982-984; c)

Fischer, W.; Grob, C.A.; Sprecher, G. von *Helv. Chim. Acta*, 1980, 63, 806-815; d) Fischer, W.; Grob, C.A.; vonSprecher, G. *Helv. Chim. Acta,* 1980, 63, 816-823; e) Grob, C.A.; Günther, B.; Waldner, A. *Helv. Chim. Acta*, 1981, 64, 2709-2720; f) Grob, C.A.; Günther, B.; Hanreich, R. *Helv. Chim. Acta*, 1982, 65, 2288-2298.

- 5 The *exo* stereochemistry of all product alcohols was apparent from their NMR spectra (cf. Flautt, T.J.; Erman, W.F. J. *Am*. Chem. Soc., 1963, 85, 3212-3218). In selected cases (entries 1-3 of Table 1; entries 4, 10, 15 and 16 of Table 2) this was further corroborated by oxidation (with TPAP/NMO; cf. Griffith, W.P.; Ley, S.V.; Whitcombe, G.P.; White, A.D. J. *Chem. Soc.* Chem. Comm., 1987, 1625-1627) and reduction (L-Selectride®; cf. Brown, H.C.; Krishnamurthy, S. J. Am. Chem. Soc., 1972, 94, 7159), which gave a different alcohol (endo) in all those cases. For the major acetate 5 derived from entries 1-3 of Table 1: Anal. calc for $C_{28}H_{34}O_5N_2$ (478.58): C, 70.27; H, 7.16; N, 5.85. Found: C, 70.26; H, 7.16; N, 5.57.
- 6 For a recent review: Burgess, K.; Ohlmeyer, M.J. *Chem. Rev.*, 1991, 91, 1179-119 7 Spectroscopic data for these regioisomers are representative.
- Regioisomer 5 (R₁=CO₂Me, R₂=Ac) was obtained by the catalyzed hydroboration sequence; m.p. 144-145°C; [α]_D -0.40° (c 1.0; CHCl₃); ¹H-NMR (CDCl₃, 300 MHz): 7.2-7.4 (m, 10H), 4.67 (br, 1H), 4.60 (d, J 6.4, 1H), 3.74 (br d, 2H), 3.72 (s, 3H), 3.65 (s, 3H), 3.33 (43 13.6.w). 3.19 **(m. 1H).** 2.71 (m. lH), 2.61 (dq. J 11.1.56.3. lH), 2.07 (m,J 11.0. H-J). 1.97 (s, 3H), 1.84 (m, J 10.5, 1H), 1.73 (m, J 10.5, 1H), 1.43 (m, 1H), 1.27 (m, 1H), 1.17 (d, J 6.3, 3H); ¹³C-NMR (CDCl₃, 75 MHz): 174.38 (s), 170.28 (s). 156.41 (s), 139.17 (s). 128.88 (d). 128.34 (d). 127.22 (d). 73.18 (d), 62.71 (s), 53.50 (d). 5321 (t), SO.77 (q), 49.34 (d), 49.25 (d), 37.74 (d), 34.85 (t), 32.22 (t), 21.24 (q), 10.62 (q); Anal. calc.for C₂₉H₃₆N₂O₆ (508.60): C, 68.48; H, 7.14; N, 5.51. Found: C, 68.98; H. 6.98; N, 5.20.

Regioisomer 6 (R_1 =CO₂Me, R₂=Ac) was obtained by treatment of the minor isomer of entries 4/5 of Table 1 with i) methyl chloroformate; ii) acetic anhydride; $[\alpha]_D$ -3.12° (c 1.0; CHCl₃); ¹H-NMR (CDCl₃, 300 MHz): 7.2-7.4 (m, 10H), 4.77 (br, 1H), 4.27 (m. H-J). 3.80 (br d, 2H), 3.72 (s, 3H), 3.62 (s, 3H), 3.35 (d, J 13,7,2H), 3.12 (m, HI). 2.74 (m. lH), 2.70 (m. lH), 2.18 (dd,J 11.1, J 3.0. LH), 2.12 (s, 3H), 2.09 (m, 1H). 1.86 (m.J 10.6. lH), 1.72 (m,J 10.6. HI), 1.15 (d,J 16.3,3H), 1.13 (m, 1H); ¹³C-NMR (CDCl₃, 75 MHz): 174.79 (s), 170.02 (s), 156.17 (s), 138.86 (s), 128.69 (d), 128.44 (d), 127.21 (d), 72.57 (d), 63.06 (s). 53.50 (0.52.48 (p 52.39 (d), 52.22 (9). 49.01 (d). 46.34 (d). 43.65 (d), 36.20 (t). 35.06 (t), 21.29 (q). 10.84 (q).

- 8 In particular various small ⁴J long range couplings, which could be clarified by extensive decoupling experiments, were very informative. Table 2, entry 1 is a representative case. The 2endo / 6exo isomer has ¹H-NMR (CDC1₃, 300 MHz): 7.38 (m, 5H, ArH), 5.17 (m, J 12.3, 2H, OCH₂Ar), 4.73 (m, J 7.0, 1H, 6Hendo), 2.84 (m, 1H, 2Hexo), 2.67 (m, 1H, 1H), 2.35 (m, 1H, 4H), 2.01 (s, 3H, Ac), 1.90 (ddd, J 13.6, J 7.0, J 2.4, 1H, 5Hendo), 1.60-1.75 (m, 3H, 3Hendo and 3Hexo and 7H), 1.48 (m, 1H, 5Hexo), 1.35 (m, 1H, 7H); By decoupling experiments small long range couplings were established between 1H and 5Hexo, 1H and 3Hexo, 3Hexo and 5Hexo, 5Hendo and 7Hanii; ¹³C-NMR (CDC1₃, 75 MHz): 173.69 (s), 170.14 (s), 136.02 (s), 128.49 (d), 128.28 (d), 128.10 (d). 73.74 (d), 66.52 (t), 45.19 (d), 42.67 (d). 39.45 (t), 37.06 (t), 36.25 (d). 30.76 (t), 21.23 (4); Anal. talc. for C₁₇H₂₀O₄ (288.33): C, 70.81; H 6.99; Found C, 71.08; H, 6.93. The 2endo/5exo isomer has ¹H-NMR (CDCl₃, 300 MHz): 7.36 (m, 3H, Arti), 5.12 (s, 2H, OCH₂Ar), 4.66 (m, J 6.6, 1H, 5Hendo), 2.76 (m, 1H, 2Hexo), 2.62 (m, 1H, 1H), 2.37 (m, J 4.7, lH, 4H), 2.01 **(s,** 3H, **AC),** 1.85 (ddd. J 14.3, J 7.0, J 2.5, lH, 6Hendo). 1.74 (dd, J 11.1, J 5.2, lH, 3Hexo), 1.66 (m, lH, 7H), 1.62 (m, 1H, 3Hendo), 1.37 (m, 2H, 6Hexo and 7H); By decoupling experiments small long range couplings were established between 2Hexo and 6Hexo, 2Hexo and 4H; ¹³C-NMR (CDC1₃, 75 MHz): 173.87 (s), 170.43 (s), 136.10 (s), 128.51 (d), 128.14 (d). 128.09 (d). 76.52 (d), 66.19 (t). 44.47 (d). 42.05 (d), 39.42 (d), 36.90 (t), 34.60 (t), 27.23 (t). 21.26 (4).
- 9 Evans, D.A.; Fu, G.C.; Hoveyda, A.H. *J. Am.* Chem. Sot., 1988.110.6917-6918.
- 10 Evans, D.A.; Fu, G.C. *J. Am. Chem. Soc.*, **1991**, *113*, 4042-404
- 11 Charton. M. *Pro&* Phys. Org. *Chem.,* 1981,13.119-252.
- 12 The starting esters and amides were prepared from commercially available 5-norbornene-2-carbonyl chloride (Pfaltz & Bauer; 2/1 mixture of endolexo isomers). In all cases exo and endo isomers were readily separated by flash chromatography. The tertiary amines were obtained by $LiAlH₄$ reduction of the corresponding tertiary amides.
- 13 The starting geminal diester was obtained from the corresponding mono ester by i) LDA, THF, -78°C; ii) MeO₂CCN, HMPA in 75 % yield, after chromatography.
- 14 Starting sulfones prepared according to Maccagnani, G.; Montanari, F.; Taddei, F.J. Chem. Soc. (B), 1968, 453-458. For exo acetate (8) derived from *endo-sulfone* of entry 13: Anal. calc. for $C_{15}H_{18}O_4S$ (294.35): C, 61.15; H, 6.16; S, 10.87. Found: C, 61.47; H. 5.86; S. 10.67.
- 15 The starting formamide ester was obtained by a Diels-Alder between ethyl N-formyl dehydroalaninate (Hellmann, H; Teichmann, K.; Lingens, F. Chem. Ber., 1958, 91, 2427-2431) and cyclopentadiene. Both thermal (110°C, 5 h) and Lewis acid catalyzed reactions (1 eq.Et₂AlCl, -10°C, 10 h) gave in 70-80 % yield an inseparable mixture of endo and exo formamides in a ratio of 3.5 / 1.
- 16 Starting materiats were obtained by treating the formamide ester mixture of note 15 with HCl/MeGH, followed by henxyl chloroformate or benzoyl chloride. The exo and endo isomers were readily separated by flash chromatography.
- 17 Evans, D.A.; Fu, G.C. J. Org. Chem., 1990, 55, 2280-228.
- 18 Burgess, K.; van der Donk, W.A.; Kook, A.M. J. Org. Chem., 1991, 56, 2949-2951 and 7360.
- 19 a) Doherty, N.M.; Bercaw, J.E. J. Am. Chem. Soc., 1985, 107, 2670-2682; b) Burger, B.J.; Santarsiero, B.D.; Trimmer, M.S.; Bercaw, J.E. J. Am. Chem. Soc., 1988, 110, 3134-3146 and references therein; c) Burger, B.J.; Thompson, M.E.; Cotter, D.; Bercaw, J.E. J. Am. Chem. Soc., 1990, 112, 1566-1577.
- 20 Partial support of this work by grant CA-18846, awarded by the National Cancer Institute (NIH), is gratefully acknowledged.

(Received in USA 28 April 1992; accepted 7 July 1992)